
A High Performance Pipelined Discrete Hilbert Transform Processor

WANG XU, ZHANG YAN and DING SHUNYING

Department of Electronic and Information Engineering

Shenzhen Graduate School, Harbin Institute of Technology

Shenzhen, Guangdong 518055

China

wangxugo@foxmail.com, ianzh@foxmail.com, http://www.hitsz.edu.cn

Abstract: - A high performance pipelined discrete Hilbert transform (HT) processor is presented in this paper.

The processor adopts fast Fourier transform (FFT) algorithm to compute discrete HT. FFT is an effectively

method to compute the discrete HT, because the discrete HT can be calculated easily by multiplication with +j

and -j in the frequency domain. The radix-2 FFT algorithm with decimation-in-frequency (DIF) and

decimation-in-time (DIT) decomposition are both utilized to construct an efficiently discrete HT signal flow

graph (SFG). Some stages in the discrete HT SFG don’t include multiplications. These stages are combined

into one stage by easy swapping operations to decrease the computational latency. The discrete HT processor is

composed of four types pipelined processing elements (PE). Some constant multiplications in these PEs are

optimized to reduce the hardware resource. Data being processed is of fixed point mode with 16-bit word width.

The pipelined discrete HT processor has the ability to simultaneously perform calculations on the current frame

of data, read input data for the next frame of data, and output the results of the previous frame of data. The

symmetric property of twiddle factors is utilized to decrease half size of the read-only memory (ROM).

Pipelined arithmetic units (adders and multipliers) are designed to enhance the performance of the discrete HT

processor. The performance analysis with some previous paper approaches show that the proposed discrete HT

processor has the shortest clock latency in discrete HT computation with same samples.

Key-Words: - discrete Hilbert transform, FFT, Adder, Multiplier, FPGA, VLSI

1 Introduction
The discrete HT was developed by Kak, Cizek,

and Oppenheim [1][2][3] for applying digital signal

processing (DSP) techniques to analytic signal,

minimum phase sequence etc. discrete HT is a very

important technique in signal and network theory,

and have been of practical importance in various

DSP systems. Band pass sampling, analytic signal,

minimum phase networks and much of spectral

analysis theory are based on discrete HT [4].

The most widely used method for computing the

discrete HT is through the use of the FFT. Since the

early paper by Cooley and Tukey [5], a large

number of FFT algorithms have been developed

such as radix-2 algorithms, Winograd algorithm

(WFTA) [6], prime factor algorithms (FPA) [7], and

fast Hartley transform (FHT) [8]. These methods

use different transforms to compute the discrete HT,

their basic method of computing the discrete HT is

that they all use the transform domain for computing

the discrete HT. There are other methods, such as

the filter method [9] and the systolic arrays [10].

This method comes directly from the discrete HT

definition. This method is the direct implementation

of the convolution operation on the input sequence

with the impulse response of the Hilbert transformer

[3]. The filter method requires considerable memory

in cases of higher accurate requirement. The systolic

arrays method computes the constant parameter

matrix beforehand, and then multiplies the input

data by this matrix, but the processing unit of the

systolic arrays is difficult to implement.

For hardware implementation, architectures of

discrete HT processor based on FFT algorithms can

be generally grouped into pipelined and memory

based architecture styles. Various FFT processors

have been proposed in [11]-[21]. The pipelined FFT

processors have two popular design styles. One is

single-path delay feedback (SDF) pipelined

architecture [11] [12], and the other is multi-path

delay commutator (MDC) pipelined architecture

[13]. Memory based architectures are widely used to

design configurable discrete HT processors due to

its constant PE and easy memory address

WSEAS TRANSACTIONS on SIGNAL PROCESSING Wang Xu, Zhang Yan, Ding Shunying

E-ISSN: 2224-3488 21 Issue 1, Volume 9, January 2013

management. Memory based architectures usually

include one or more PEs, and the hardware cost and

the power consumption are both lower than other

architectures. Pipelined architectures are good at

memory usage, as well as supporting stream data

computation. The pipelined architectures are usually

used to perform a constant point size discrete HT in

high performance environment.

Discrete HT can be computed directly by general

FFT processors, but this method is inefficient and

has low performance. Discrete HT algorithms based

on FFT has some special features which can reduce

the latency significantly, so a pipelined specific

processor is presented for high speed discrete HT

computation. The discrete HT SFG includes two

FFTs. Some stages in discrete HT SFG are

combined into one stage by easy swapping

operations. The discrete HT processor is composed

of four types pipelined PEs. The pipelined discrete

HT processor has the ability to perform successive

frame data in stream mode. All arithmetic units in

the processor are working in pipelined mode.

The rest of this paper is organized as follows. In

the next section we review the discrete HT

definition, and then discuss its related computational

methods and algorithms. In section III a novel

discrete HT SFG and the architecture of the

proposed discrete HT processor is illustrated. Then

four types pipelined butterfly PE, multipliers and

adders are presented in detail in this section.

Performance evaluation and comparison of various

discrete HT architectures is presented in section IV.

Finally, concluding remarks are given in Section V.

2 Discrete HT and FFT Algorithms
This section gives a brief review on definitions and

computational methods of discrete HT. Radix-2

FFT/IFFT algorithm is also discussed.

2.1 The Discrete Hilbert Transform
The HT of signal ()x t is defined as [3]

1 () 1
ˆ() () (1)

x
x t d x t

t t




  




  



where ˆ()x t is the Hilbert transform result.

The HT in the frequency domain is given by

ˆ () sgn() () (2)X j X   

Where ()X  is the Fourier transform of ()x t and

 0
sgn() (3)

 0

j
j

j






 
  

 

The discrete HT is developed as an exact

equivalent of the Hilbert transform for discrete

signals and is defined as

ˆ() () () (4)x n x n h n 

Where ()h n is the impulse of discrete HT given

by

0 0
() (5)

(1 (1)) 0n

n
h n

n n


 

  

The discrete HT can be computed via FFT as

shown below

ˆ() IFFT(sgn() ()) (6)x n j m X m 

Where () FFT(())X m x n and

 m [1, 2 1]

sgn() 0 m 0, 2 (7)

 m [2 1,N-1]

j N

j m N

j N

  


  
  

It is evident that the discrete HT can be

calculated easily by FFT in three steps. This method

transforms the input sequence to the frequency

domain, then computes the Hilbert transform in the

frequency domain and finally performs an IFFT

operation to get the required Hilbert-transformed

sequence.

2.2 The Fast Fourier Transform
The discrete Fourier transform (DFT) is the most

straightforward mathematical method for finding the

frequency content ()X m of a sequence ()x n in the

time domain. The N-point DFT and Inverse DFT

(IDFT) are defined as:
1

0

1

0

() () , m [0, 1] (8)

1
() () , [0, 1] (9)

N
nm

N

n

N
nm

N

m

X m x n W N

x n X m W n N
N










  

  





The twiddle factor exp(2)NW j N  denotes

the N-point primitive root of unity. The IDFT can be

rewritten as:
*

1
*

0

1
() () , 0,1, , 1 (10)

N
nm

N

m

x n X k W n N
N





 
   

 


The equations (8) and (10) have the same twiddle

factors and the similar mathematical expression, so

DFT and IDFT can be performed by same hardware.
2N complex multiplications need to be calculated in

equations (8) or (10), so a straightforward hardware

implementation of the DFT algorithm is obviously

impractical. Therefore, the FFT was developed to

efficiently speed up DFT computation time and

significantly reduce the amount of multiplications.

WSEAS TRANSACTIONS on SIGNAL PROCESSING Wang Xu, Zhang Yan, Ding Shunying

E-ISSN: 2224-3488 22 Issue 1, Volume 9, January 2013

FFT was proposed by Cooley and Tukey [5] in

1965. FFT is an efficient approach for reducing the

computational complexity of DFT. Generally, FFT

treats input sequence by decimation-in-frequency

(DIF) or decimation-in-time (DIT) decomposition to

build a regular SFG.

In radix-2 DIF FFT, ()x n can be segmented into

its even and odd indexed elements, then equation (8)

is break into two parts as
(2) 1

2

0

(2) 1
2

0

() (2)

(2 1) (11)

N
nm

N

n

N
m nm

N N

n

X m x n W

W x n W









 







Because 2

2N NW W , so

(2) 1

2

0

(2) 1

2

0

(2) 1
(2)

2

0

(2) 1
(2) (2)

2

0

() (2)

(2 1) (12)

(2) (2)

(2 1) (13)

N
nm

N

n

N
m nm

N N

n

N
n m N

N

n

N
m N n m N

N N

n

X m x n W

W x n W

X m N x n W

W x n W















 



 



  











Because (2)

2 2

n m N nm

N NW W  and (2)m N m

N NW W   , so

(2) 1

2

0

(2) 1

2

0

(2) (2)

(2 1) (14)

N
nm

N

n

N
m nm

N N

n

X m N x n W

W x n W









 

 





let
(2) 1 (2) 1

2 2

0 0

() (2) , () (2 1)
N N

nm nm

N N

n n

A m x n W B m x n W
 

 

   

Then equations (12) and (14) are simplified to the

form

() () () (15)

(2) () () (16)

m

N

m

N

X m A m W B m

X m N A m W B m

 

  

For an N-point DFT, we perform an N/2-point

DFT to get the first N/2 outputs and use those to get

the last N/2 outputs. If N is in powers of two, The

DFT can be divided into 2log N stages.

2.4 Optimization of Constant Multiplications

Some constant multiplications can be simplified to

reduce the chip area in discrete HT. For instance, an

input signal multiplied by twiddle factors 8N

NW or

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

2

16W

1

16W

3

16W

5

16W

6

16W

7

16W

2

16W

6

16W

2

16W

6

16W

ˆ (1)x

ˆ (2)x

ˆ (3)x

ˆ (5)x

ˆ (4)x

ˆ (7)x

ˆ (9)x

ˆ (8)x

ˆ(10)x

ˆ(11)x

ˆ(13)x

ˆ(12)x

ˆ(14)x

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x(11)

x(12)

x(13)

x(14)

x(15)

-1

-1

-1

-1

×0

-1

-1

-1

-1

*

*

*×(-j)

×0

×j

×(-j)

×j

×(-j)

×j

*

*

*

*

*

-1

-1

-1

-1

×(-j)

-1

-1

-1

-1

*

*

*×(-j)

×j

×j

×(-j)

×j

×(-j)

×j

*

*

*

*

*

-j

-j

-j

-j

-j

-j

-j

ˆ (6)x

ˆ(15)x

ˆ (0)x

-j

-j

-j

-j

2

16W

6

16W

2

16W

6

16W

-j

-j

2

16W

1

16W

3

16W

5

16W

6

16W

7

16W

-j

PE0PE3PE2PE4PE1PE2PE3

Fig.1. The 16-point discrete HT SFG by two radix-2 DIF FFTs

WSEAS TRANSACTIONS on SIGNAL PROCESSING Wang Xu, Zhang Yan, Ding Shunying

E-ISSN: 2224-3488 23 Issue 1, Volume 9, January 2013

3 8N

NW can be expressed as:

8

3 8

() 2(() ()) 2 (17)

() 2(() ()) 2 (18)

N

N

N

N

a jb W a b j b a

a jb W b a j a b

    

    

where a jb denotes a input signal data in complex

form. Eqn. 17/18 saves two multipliers, and they

need only two adders and two multipliers to perform

twiddle factor multiplication.

Another example, data multiplied by j are

shown below:

() (19)

() (20)

j a jb b ja

j a jb b ja

   

   

Eqn. 19/20 can be obtained by swapping and

negating operation easier than multiplications, so

data multiplied by j can be computed without

adders and multipliers. The circuit implementation

of these constant multipliers will be illustrated in the

next section.

3 The Proposed discrete HT SFG and

associated Architecture

3.1 The Proposed discrete HT SFG
Discrete HT can be computed by two FFTs. As an

example, a 16-point discrete HT SFG is depicted in

Fig.1. The discrete HT SFG has seven stages, and

these stages are computed by PE0, PE1, PE2, PE3

and PE4. In fact, discrete HT depicted by this SFG

form with point size N, where N is in powers of two,

can be divided into 22log 1N  stages and performed

by these five types of PEs.

The construction of discrete HT SFG needs to

avoid bit reversed sorting. Bit reversed sorting is a

time consuming operation, and it needs additional

memories for swapping data. Two FFTs with

different decomposition in the discrete HT SFG can

avoids bit reversed sorting. In most cases, natural

order data meets our work demands, so FFT in

discrete HT SFG is of DIF decomposition, and IFFT

is of DIT decomposition.

In the middle of discrete HT SFG, three stages

without twiddle factor multiplications are combined

into one stage, so the stages of N-point discrete HT

are changed from
22log 1N  to

22log 1N  . The

optimization decreases two stages iteration in the

discrete HT SFG.

3.2 Optimization of the discrete HT SFG
The discrete HT SFG described above appears

regularity and has less complex multipliers required.

Thus, it is suited for hardware implementation. The

optimization of the discrete HT SFG can decrease

the computation latency significantly. Discrete HT

in the frequency domain is expressed in equations (6)

and (7). It is evident that the discrete HT can be

calculated easily in the frequency domain as

multiplications with j , and these multiplications

can be replaced with conjugating and swapping

operations. Moreover, the last FFT stage and the

first IFFT stage have multiplications with j also.

Discrete HT multiplication in the frequency domain

can be combined with two adjacent FFT/IFFT

stages. This method is shown in Fig.2. Assume that

the inputs of one butterfly in the last FFT stage are

(ar, ai) and (br, bi), so the FFT butterfly result is

(ar+br, ai+bi) and (ar-br, ai-bi). After complex

multiplications in the frequency domain, the result is

(ai+bi, -ar-br) and (bi-ai, ar-br). One conjugation is

performed after complex multiplications, so the

numbers are changed to (ai+bi, ar+br) and (bi-ai,

br-ar). Then the butterly in the first IFFT stage

treats (ai+bi, ar+br) and (bi-ai, br-ar) as the inputs

and this IFFT butterfly results are (2bi, 2br) and (2ai,

2ar). The results can write as (bi, br) and (ai, ar)

also. A series of complicated operations on (ar, ai)

and (br, bi) are optimized to swap operations shown

in Fig.2. We call this optimization as “Swap”.

3.3 Twiddle Factors Symmetry
Twiddle factors have a symmetric property. In the

second quadrant, twiddle factor multiplications with

a complex number can be written as:
(4)() (), 4 2 (13)k k N

N NW a jb W b ja N k N    

Twiddle factors is located in the first and the second

quadrant. Given the equation (13), twiddle factors in

the second quadrant can be obtained by a

combination of twiddle factors in the first quadrant.

In other words, arbitrary twiddle factors used in

discrete HT can utilize this operation type to derive

the wanted value, thus can significantly shorten the

size of ROM used to store the twiddle factors. Based

-1

*

*

×(-j)

×j
-1

(ar,ai)

(br,bi)

(ai+bi,-ar-br)

(bi-ai,ar-br)

(ai+bi,ar+br)

(bi-ai,br-ar)

(2bi,2br)

(2ai,2ar)

(ar+br,ai+bi)

(ar-br,ai-bi)

(bi,br)

(ai,ar)

(ar,ai)

(br,bi)

Swap

×(-j)

(bi,br)

(ai,ar)

(ar,ai)

(br,bi)

Swap

Fig.2. Stages optimization of discrete HT SFG

WSEAS TRANSACTIONS on SIGNAL PROCESSING Wang Xu, Zhang Yan, Ding Shunying

E-ISSN: 2224-3488 24 Issue 1, Volume 9, January 2013

on the symmetric property, the ROM size for

twiddle factors will be reduced half.

3.4 The Proposed discrete HT Architecture
A 16-point pipelined discrete HT processor is

shown in Fig.3. The proposed architecture is

composed of five different types of processing

elements (PEs), delay-line (DL) buffers (as shown

by a rectangle with a number inside), and some

other units. The proposed architecture is also suited

for arbitrary point sizes in powers-of-2 by adding

some PE3s to FFT and IFFT. Here, PE0 is a module

without twiddle factor multiplication, and it is a sub-

module of PE1, PE2 and PE3. These three types of

PEs are modules that contain twiddle factor

multiplications, and they are divided into two parts

internal. One part is complex additions and

subtractions shown by a rectangle with a string

“PE0” inside. Another part is twiddle factor

multipliers shown by rectangles with letter “M”

followed by a number inside. The star symbol in the

figure means a conjugating operation which is easy

to implement by taking the 2’s complement of the

imaginary part of a complex value. The divided-by-

16 module can be substituted with a shifter. The

detailed functions and structures of five types of PEs

and three types of twiddle factor multipliers in Fig.4

are described in the following subsections.

3.5 The Pipelined butterfly PE architecture

Based on the radix-2 FFT algorithm, five types of

PEs (PE0, PE1, PE2, PE3 and PE4) used in our

design are illustrated from Fig.4 to Fig.8. The

functions of these five PE types correspond to each

of the butterfly stages as shown in Fig.1.

The pipelined structure of PE0 stage is shown in

Fig.4. PE0 is used to perform the complex additions

of the butterfly, and serves as the sub-modules of

other PEs. (rin, iin) is the complex input data, (Rout,

Iout) is the complex output data. (R0, I0) and (R1, I1)

are one pair complex output data in the figure.

Complex input data will store to DL buffers firstly

until DL buffers are full. By this way, the input data

has been broken into two parallel data stream

flowing forward, with same length and correct

“distance” between data elements entering the

adders by proper delays.

As for the PE1 stage shown in Fig.5, M0 is a

sub-module to compute multiplication by –j. Data

(R0, I0) from PE0 is send to M0 firstly. At the same

time, data (R1, I1) is stored in buffers in M0. The

length of buffers in M0 is 1. If signal “s0” is 0, data

from PE0 will be sent to (Rout, Iout) directly. If signal

R0

R1

I0

I1

rin

+

-

Buffer

iin

+

-

Buffer

Fig.4. The architecture of PE0

PE0

rin

iin

-1

0

1

0

1

1

1

s0

1

0

0

1
Rout

Iout

×

s0M0

Fig.5. The architecture of PE1

PE2

PE2PE3

In

out

8

PE0 M2

8

2

PE0 M1

2

4

PE0

2

M1

4

PE3

4

PE0 M0

4

PE0

8

PE1

2

PE0 M0

2

PE4

8
* /16

Fig.3. The architecture of proposed discrete HT processor

WSEAS TRANSACTIONS on SIGNAL PROCESSING Wang Xu, Zhang Yan, Ding Shunying

E-ISSN: 2224-3488 25 Issue 1, Volume 9, January 2013

“s0” is 1, data from DL buffers will be multiplied by

–j, and then sent to (Rout, Iout). DL buffers in Fig.5

are used to combine two parallel complex data (R0,

I0) and (R1, I1) into one successive serial data.

The pipelined structure of the PE2 is shown in

Fig.6. “M1” is a sub-module used to compute the

twiddle factor multiplications with /8 3 /8,N N

N NW W or -j.

Since 3 /8 /8N N

N NW jW  , the multiplication by /8N

NW

and then by –j can substitute for the multiplication

with 3 /8N

NW . Hence, the structure of PE2 utilizes this

kind of cascaded calculation and some multiplexers

to realize all the necessary calculations in the PE2

stage. This method saves one complex multiplier to

forms a low-cost hardware for computing 3 /8N

NW . In

the figure, signal “s0” is used to select data from

(R0, I0) or DL buffers. Signal “s0” is also used to

enable or disable adders and multipliers in “M1”.

Signal “s0” and “s1” works together to control the

twiddle factors to be multiplied shown in Table 1. If

“s1” and “s2” are both zero, meaning the twiddle

factor is 1, no multiplication need to perform. If

“s1” is zero and “s2” is one, then “M1” performs the

complex multiplications by -j. If “s1” is one and

“s2” is zero, then “M1” performs the complex

multiplications by /8N

NW . If “s1” and “s2” are both

one, then “M1” performs the multiplications by

twiddle factor 3 /8N

NW .

The pipelined structure of the PE3 is shown in

Fig.7. “M2” is a sub-module used to compute

twiddle factors multiplications which is composed

of four multipliers and two adders. One ROM is

required for storing twiddle factors. PE3 is a fully

functional DIF butterfly which support arbitrary

twiddle factor multiplications.

PE4 is shown in Fig.8. PE4 has no multipliers

and adders. The function of PE is that it swaps the

real part and the imaginary part of complex data,

and reverses the order of two successive complex

data meanwhile. These operations are controlled by

“s0”. Signal “s1” is used to control whether to do

multiplication by –j.

3.6 General multiplier
Multipliers are used in PE3 for the computation of

complex multiplication by twiddle factors. Based on

equation 13, the circuit structure of complex

multiplier shown in Fig.9, also adopts a cascaded

scheme to achieve low-cost hardware. Here, (I0, I1)

are the input signals, and (Q0, Q1) are the output

signals the same as (Rout, Iout) in PE3. (cosa, sina)

are twiddle factors read from ROM.

Some architectures are proposed in [22-26]

Serial, booth and carry save are some general

architectures in multiplier design. Serial multiplier

has a high clock rate, but it has a large circuit area

Rout

Iout

+

-

×

×0

1

PE0

0

1Buffer

Buffer

s0

rin

iin

M1
-1

1

0

0

1

×

s10.7071

Fig.6. The architecture of PE2

PE0

×

×

×

×

cosa

sina

cosa

sina

+

-

×

-1

0

1

0

1

Buffer

Buffer

s0

1

0

0

1
Rout

Iout

s1

rin

iin

M2

Fig.7. The architecture of PE3

×

-1

0

1

0

1

s0

iin

2

rin

2 1

0

0

1
Rout

Iout

s1PE4

Fig.8. The architecture of PE4

TABLE 1

TWIDDLE FACTORS SELECTION

s0 s1 Twiddle factors

0 0 1

0 1 -j

1 0 /8N

NW

1 1 3 /8N

NW

WSEAS TRANSACTIONS on SIGNAL PROCESSING Wang Xu, Zhang Yan, Ding Shunying

E-ISSN: 2224-3488 26 Issue 1, Volume 9, January 2013

and long latency for computation. 4-bit booth

multiplier saves half of the clock cycles compared

with serial multiplier, but the latency is not the

minimal. The array multiplier has a compacted

structure and a very efficient layout. But it is hard to

determine the propagation delay straightforward due

to array organization. The carry save architecture is

chosen for designing the 16x16 bit multiplier

because it has a moderate latency with

comparatively small area. The carry bits are passed

diagonally downwards in the carry save multiplier.

Partial products are made by anding the inputs

together and passing them to the appropriate adder.

The number of adders (HA and FA) in each stage

is equal to the mantissa’s length minus one. For

example, a 16x4 carry save multiplier is shown in

Fig.10 and it has four stages: The first stage consists

of three HAs. The second and the third stages

consist of three FAs respectively. The last stage

consists of one HA and two FAs. The critical path

of the processor is in the multiplier. The latency of

the proposed pipelined multiplier is LM=4.

3.7 Adders
The design and simulation of various adder

structures are depicted in [27-36]. The carry-

lookahead structure has the fast speed, but it is only

useful for small input words width. The carry-select

structure is chosen to implement the 16-bit adder in

PEs. The carry-select adder anticipates both possible

values of the carry input and evaluate the result for

both possibilities in advance. Once the real value of

the incoming carry is known, the correct result is

easily selected with a simple multiplexer. The

latency of the carry-select adder is LA=1.

3.8 Constant multipliers
Constant multipliers have higher computed speed

and less chip area cost than general multipliers. The

constant multiplication by 2 2 can be implemented

by a special bit parallel multiplier instead of general

word length multipliers. The binary representation

of 2 2 is:

1 3 4 6 8 142 2 2 2 2 2 2 2 (21)          

Eqn.21 includes five additions and six shift

operations, and a straightforward implementation

for the above equation introduces a poor precision

due to the truncation error [17], and spends more

hardware cost. To improve the precision, eqn.19 can

be rewritten as:
1 3 3 3 5 112 2 (2 2)(1 2) 2 (2 +2) (22)        

 According to eqn.22, the circuit structure of the

constant multiplier is illustrated in Fig.11. The

circuit uses four adders and five barrel shifters. The

constant multiplier adopts pipeline technology for

high performance, and its latency is three clock

cycles. The realization of complex multiplication

by /8N

NW and 3 /8N

NW using a radix-2 butterfly structure

with its both outputs multiplied by 2 2 is shown in

Fig.6. This circuit structure has just been used in the

PE2 and its latency is L0.707=3.

The multiplication by -j can be calculated by a

negation and an additions, so its latency is L-j=1.

4 Implementation and Performance

Analysis

0 1 2

in

>>3

>>1 +

>>5

>>3

+

out>>11 + +

Fig.11. The architecture of the constant multiplier

×

×

×

×

cosa

sina

cosa

sina

+

-

×

-1

1

0

0

1
Q0

Q1

s1

I0

I1

Fig.9. The architecture of the complex multiplier.

HA HA HA HA

FAFAFAHA

FAFAFAHA

HAFAFAHA

HA: Half adder

FA: Full adder

...

...

...

...

Fig.10. the architecture of 16x4 bit carry save

multiplier

WSEAS TRANSACTIONS on SIGNAL PROCESSING Wang Xu, Zhang Yan, Ding Shunying

E-ISSN: 2224-3488 27 Issue 1, Volume 9, January 2013

4.1 Implementation
A pipelined discrete HT processor with point size

1024 is implemented in the paper. The word width

of the processor is 16 bits. The processor is

simulated on XC5VLX50T-2 FPGA. The placement,

route process, and timing analysis of the synthesized

designs are accomplished using Xilinx Design Suite

13.2. The design was written by Verilog HDL and

doesn’t contain Xilinx DSP48Es.

The latency of the 1024-point discrete HT

processor is the sum of all stages latency of PEs and

the point size. The latency of each stage is the clock

cycles of cascaded arithmetic units cost and the

depth of buffers. The latency of all stages is listed in

table 2. So the processor latency of the 1024-point

FFT and discrete HT are
9

0

18

0

1024 =3119 (23)

1024 =5212 (24)

FFT i

i

HT i

i

L L

L L





 

 





4.2 Comparison
In Table 3, a number of DSP processors are

compared with the proposed one. The hardware in

[37] has a low clock rate. This architecture adopts

radix-4 FFT algorithm and has poor memory

utilization. The architecture includes four memories,

and their depth equals to the discrete HT point size.

The FFT processor proposed in [38] adopts ASIC

implementation with 0.18um and 1.8V voltage. This

FFT processor has a slow latency because the PE is

of radix-24 algorithm. In [39] the PE is not working

in pipelined mode, so the latency is longer than our

work. In our work, the 1024-point pipelined discrete

HT includes 19 stages after the optimization of SFG.

In Table 3, our work has the minimal latency for

computing discrete HT.

5 Conclusion
A high performance pipelined discrete HT processor

is presented in this paper. The processor adopts FFT

algorithm to compute discrete HT. Some stages in

the discrete HT SFG have no multiplications. They

are combined into one stage to decrease the

computation latency. The discrete HT processor is

composed of four types pipelined PE. Data being

processed is of fixed point mode with 16-bit word

width. Pipelined adders and multipliers are designed

to enhance the performance of the discrete HT

processor. The proposed discrete HT processor is

written in Verilog HDL, so it is easy for ASIC

implementation. The performance analysis with

some previous paper approaches show that the

proposed discrete HT processor has the shortest

clock latency in discrete HT computation with same

samples.

References:

[1] S.C. Kak, The discrete Hilbert transform, Proc.

IEEE, Vol.58, 1970, pp.585-586.

[2] V. Cizek, Discrete Hilbert transform, IEEE

Trans. Audio and electroacoustics, Vol.18,

No.4, 1970, pp.340-343.

[3] A.V. Oppenheim, R.W. Schafer, Discrete time

TABLE 3

PERFORMANCE COMPARISON OF DIFFERENT DISCRETE HT PROCESSORS

Works Point Clock

rate

MHz

FFT

Latency

FFT

time

(us)

Discrete

HT

latency

Discrete

HT

time (us)

REG LUT DSP FPGA

[37] 1024 89 - 14.1 - 28.2 - - - EP200K400E

[38] 1024 110 92.7

[39] Xilinx 1024 366 7364 20.12 14728 37.44 1253 1114 3 XC5VLX50T-2

Our work 1024 347 3119 8.988 5212 15.02 5268 6486 0 XC5VLX50T-2

TABLE 2

THE LATENCY OF EACH STAGE IN 1024-POINT

DISCRETE HT

Stages Latency

0, 18 L0=L18=2*512+2LA+LM=1030

1, 17 L1=L17=2*256+2LA+LM=518

2, 16 L2=L16=2*128+2LA+LM=262

3, 15 L3=L15=2*64+2LA+LM=134

4, 14 L4=L14=2*32+2LA+LM=70

5, 13 L5=L13=2*16+2LA+LM=38

6, 12 L6=L12=2*8+2LA+LM=22

7, 11 L7=L11=2*4+2LA+L0.707=13

8, 10 L8=L10=2*2+LA+L-j=6

9 L9=2+L-j=2

WSEAS TRANSACTIONS on SIGNAL PROCESSING Wang Xu, Zhang Yan, Ding Shunying

E-ISSN: 2224-3488 28 Issue 1, Volume 9, January 2013

signal processing, Prentice Hall, 1989, pp.775-

810.

[4] R.G. Lyons, Understanding digital signal

processing, Prentice Hall, 2005, pp.362-364

[5] J.W. Cooley, J.W. Tukey, An Algorithm for the

Machine Calculation of Complexes Fourier

Series, Math. Computation, Vol.19, No.90,

1965, pp.297-301.

[6] S. Winograd, On Computing the DFT, Math.

Computation, Vol.32, No.141, 1986, pp.175-

199.

[7] D. Kolba, T. Parks, A Prime Factor Algorithm

using High-speed Convolution, IEEE Trans.

Acoust. Speech Signal Process, Vol.25, No.4,

1977, pp.281-294.

[8] S.C. Pei, S.B Jaw. Computation of the discrete

Hilbert transform through fast Hartley

transform, IEEE Trans. Circuits and Systems,

Vol.36, No.9, 1989, pp.1251-1252.

[9] B. Kumar, S.C Dutta Roy, Design of efficient

FIR digital differentiators and Hilbert

transformers for midband frequency ranges,

International Journal of Circuit Theory and

Application, Vol.17, No.4, 1989, pp.483-488.

[10] S.K. Padala, K.M.M Prabhu, Systolic arrays for

the discrete Hilbert transform, Proc of IEEE

CDS, Vol.144, No.5, 1997, pp.259-264.

[11] S. He and M. Torkelson, “Designing Pipeline

FFT Processor for OFDM (de)Modulation,” in

Proc. URSI Int. Symp. Signals, Systems, and

Electronics, Vol.29, 1998, pp.257-262.

[12] H.L. Groginsky and G.A. Works, “A pipeline

fast Fourier transform,” IEEE Transactions on

Computers, Vol.19, No.11, 1970, pp.1015-

1019.

[13] H. Shousheng, Design and implementation of a

1024-point pipeline FFT processor, Custom

Integrated Circuits Conference, 1998, pp.131-

134.

[14] K. Maharatna, E. Grass, U. Jagdhold, A 64-

Point fourier transform chip for high-speed

wireless LAN application using OFDM, IEEE

Journal of Solid-State Circuits, Vol.39, no.3,

2004, pp.484-493.

[15] Y.T. Lin, P.Y. Tsai and T.D. Chiueh, “Low-

power variable-length fastFourier transform

processor,” IEEE Proc. Comput. Digit. Tech.,

Vol.152, No.4, 2005, pp.499-506.

[16] S. Minhyeok, L. Hanho, A High-Speed Four-

Parallel Radix-24 FFT/IFFT Processor for

UWB Applications, in Proc. IEEE Int. Symp.

Circuits and Systems, 2008, pp. 960-963.

[17] B.M. Bass, A low-power, high performance

1024-point FFT processor, IEEE Journal of

Solid-State Circuits, Vol.34, No.3, 1999,

pp.380-387.

[18] M. Hasan, T.Arslan, J.S. Thompson, A novel

coefficient ordering based low power pipelined

radix-4 FFT processor for wireless LAN

applications, IEEE Transactions on Consumer

Electronics, Vol.49, No.1, 2003, pp.128-134.

[19] S. He, M. Torkelson, Designing Pipeline FFT

Processor for OFDM (de)Modulation, Proc.

IEEE URSI Int. Signals, Systems, and

Electronics, Vol. 29, 1998, pp.257-262.

[20] E.H. Wold, A.M. Despain, Pipeline and

parallel-pipeline FFT processors for VLSI

implementation, IEEE Trans. Computer,

Vol.33, No.5, 1984, pp.414-426.

[21] Y. Chu, L. Yiting, Y. Maohsu, H. Paoann, et al,

A Low-Power 64-point Pipeline FFT/IFFT

Processor, IEEE Transactions on Consumer

Electronics, Vol.57, No.1, 2011, pp.40-45.

[22] W.C. Yeh, C.W. Jen, High Speed Booth

Encoded Parallel Multiplier Design, IEEE

transactions on computers, Vol.49, No.7, 2000,

pp.692-701.

[23] Z. Haung, M.D. Ercegovac, High performance

Low Power left to right array multiplier design,

IEEE Trans. Computer, Vol.54, No.3, 2005,

pp.272-283.

[24] N.H.E. Weste, D. Harris, A. Banerjee, CMOS

VLSI Design A circuits and Systems

Perspective, Third edition, Pearson Education,

pp.347-349.

[25] A.D. Booth, A Signed Binary Multiplication

Technique, Quartely Journal of Mechanics and

Applied Mathematics. Vol.4, No.2, pp.236-240,

1951.

[26] O.L. MacSorley, High Speed Arithmetic in

Binary Computers, Proc of the IRE, Vol.49,

no.1, 1961, pp. 67-97.

[27] T.Y. Chang, M.J. Hsiao, Carry-select adder

using single ripple-carry adder, Electronics

Letters, vol.34, No. 22, 1998, pp.2101-2103.

[28] J.M. Rabaey, Digital Integrated Circuits: A

Design perspective. New Jersey, Prentice-Hall,

1996.

[29] H. Morinaka, H. Makino, Y. Nakase, et al, A

64 bit Carry Look-ahead CMOS adder using

Modified Carry Select. Custom Integrated

Circuit Conference, 1995, pp.1985-1993.

[30] K. Youngjoon, K.L. Sup, A low power carry

select adder with reduced area, Proc of ISCAS

2001. Vol.4, 2001, pp218-221.

[31] R.P.P. Singh, P. Kumar, B. Singh, Performance

Analysis of Fast Adders Using VHDL, Proc of

ARTcom, 2009, pp.189-193.

WSEAS TRANSACTIONS on SIGNAL PROCESSING Wang Xu, Zhang Yan, Ding Shunying

E-ISSN: 2224-3488 29 Issue 1, Volume 9, January 2013

[32] P. Prashanth, P. Swamy, Architecture of adders

based on speed, area and power dissipation,

Proc of WICT 2011, 2011, pp.240-244.

[33] P. Gurjar, R. Solanki, P. Kansliwal, et al, VLSI

implementation of adders for high speed ALU,

Proc of INDCOM 2011, 2011, pp.1-6.

[34] S. Liyuan, J. Wenming, T. Shuai, et al, A

Parallel Feedback Carry Adder Based on Half

Adder, Proc of ICIECS 2010, 2010, pp.1-4.

[35] H. Seok-Won, K. Moon-Gyung, L. Yong-Surk,

Study of optimized adder selection, Proc of

ICASIC 2003, 2003, Vol.2, pp.1265-1268.

[36] C. Pinghua, Z. Juan, X. Guobo, et al, An

improved 32-bit carry-lookahead adder with

Conditional Carry-Selection, Proc of ICCSE

2009, 2009, pp.1911-1913.

[37] X. Yingke, F. Bo, Design and Implementation

of High Throughput FFT Processor, Journal of

Computer Research and Development, Vol.41,

No.6, 2004, pp.1022-1029 (in Chinese).

[38] L. Qingwang, W. Xin’an, N. Jiuchong, A Low-

power Variable-length FFT Processor Base on

Radix-24 Algorithm, Proc of PRIMEASIA

2009, 2009, pp.129-132.

[39] Xilinx, Inc. LogiCORE IP Fast Fourier

Transform v7.1 [EB/OL], 2011-3-1.

http://www.xilinx.com/support/documentation/i

p_documentation/xfft_ds260.pdf

Wang Xu, born in 1980. Received

the M.A’s. degrees in

microelectronics from the

Shenzhen Graduate School, Harbin

Institute of Technology, Shenzhen,

China, in 2007. Since 2008, he has

been a PhD candidate in

microelectronics. His main research interests

include image processing and embedded DSP

processor design.

Zhang Yan, born in 1969. He has

been professor of the Shenzhen

Graduate School, Harbin Institute

of Technology since 2002. His

main research interests are

application specific instruction set

processor design, including medical

image processing chips and

wireless communication baseband chip.

Ding shunying, born in 1988, she is

a BSc candidate in microelectronics

in the Shenzhen Graduate School,

Harbin Institute of Technology. Her

main research interest is image

processing and FFT acceleration by

Intel SSE and NVidia CUDA.

WSEAS TRANSACTIONS on SIGNAL PROCESSING Wang Xu, Zhang Yan, Ding Shunying

E-ISSN: 2224-3488 30 Issue 1, Volume 9, January 2013

