
A High Performance Pipelined Discrete Hilbert Transform Processor 

 
 

WANG XU, ZHANG YAN and DING SHUNYING 

Department of Electronic and Information Engineering 

Shenzhen Graduate School, Harbin Institute of Technology 

Shenzhen, Guangdong 518055 

China 

wangxugo@foxmail.com, ianzh@foxmail.com, http://www.hitsz.edu.cn 
 

 

Abstract: - A high performance pipelined discrete Hilbert transform (HT) processor is presented in this paper. 

The processor adopts fast Fourier transform (FFT) algorithm to compute discrete HT. FFT is an effectively 

method to compute the discrete HT, because the discrete HT can be calculated easily by multiplication with +j 

and -j in the frequency domain. The radix-2 FFT algorithm with decimation-in-frequency (DIF) and 

decimation-in-time (DIT) decomposition are both utilized to construct an efficiently discrete HT signal flow 

graph (SFG). Some stages in the discrete HT SFG don’t include multiplications. These stages are combined 

into one stage by easy swapping operations to decrease the computational latency. The discrete HT processor is 

composed of four types pipelined processing elements (PE). Some constant multiplications in these PEs are 

optimized to reduce the hardware resource. Data being processed is of fixed point mode with 16-bit word width. 

The pipelined discrete HT processor has the ability to simultaneously perform calculations on the current frame 

of data, read input data for the next frame of data, and output the results of the previous frame of data. The 

symmetric property of twiddle factors is utilized to decrease half size of the read-only memory (ROM). 

Pipelined arithmetic units (adders and multipliers) are designed to enhance the performance of the discrete HT 

processor. The performance analysis with some previous paper approaches show that the proposed discrete HT 

processor has the shortest clock latency in discrete HT computation with same samples. 
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1 Introduction 
The discrete HT was developed by Kak, Cizek, 

and Oppenheim [1][2][3] for applying digital signal 

processing (DSP) techniques to analytic signal, 

minimum phase sequence etc. discrete HT is a very 

important technique in signal and network theory, 

and have been of practical importance in various 

DSP systems. Band pass sampling, analytic signal, 

minimum phase networks and much of spectral 

analysis theory are based on discrete HT [4]. 

The most widely used method for computing the 

discrete HT is through the use of the FFT. Since the 

early paper by Cooley and Tukey [5], a large 

number of FFT algorithms have been developed 

such as radix-2 algorithms, Winograd algorithm 

(WFTA) [6], prime factor algorithms (FPA) [7], and 

fast Hartley transform (FHT) [8]. These methods 

use different transforms to compute the discrete HT, 

their basic method of computing the discrete HT is 

that they all use the transform domain for computing 

the discrete HT. There are other methods, such as 

the filter method [9] and the systolic arrays [10]. 

This method comes directly from the discrete HT 

definition. This method is the direct implementation 

of the convolution operation on the input sequence 

with the impulse response of the Hilbert transformer 

[3]. The filter method requires considerable memory 

in cases of higher accurate requirement. The systolic 

arrays method computes the constant parameter 

matrix beforehand, and then multiplies the input 

data by this matrix, but the processing unit of the 

systolic arrays is difficult to implement. 

For hardware implementation, architectures of 

discrete HT processor based on FFT algorithms can 

be generally grouped into pipelined and memory 

based architecture styles. Various FFT processors 

have been proposed in [11]-[21]. The pipelined FFT 

processors have two popular design styles. One is 

single-path delay feedback (SDF) pipelined 

architecture [11] [12], and the other is multi-path 

delay commutator (MDC) pipelined architecture 

[13]. Memory based architectures are widely used to 

design configurable discrete HT processors due to 

its constant PE and easy memory address 
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management. Memory based architectures usually 

include one or more PEs, and the hardware cost and 

the power consumption are both lower than other 

architectures. Pipelined architectures are good at 

memory usage, as well as supporting stream data 

computation. The pipelined architectures are usually 

used to perform a constant point size discrete HT in 

high performance environment. 

Discrete HT can be computed directly by general 

FFT processors, but this method is inefficient and 

has low performance. Discrete HT algorithms based 

on FFT has some special features which can reduce 

the latency significantly, so a pipelined specific 

processor is presented for high speed discrete HT 

computation. The discrete HT SFG includes two 

FFTs. Some stages in discrete HT SFG are 

combined into one stage by easy swapping 

operations. The discrete HT processor is composed 

of four types pipelined PEs. The pipelined discrete 

HT processor has the ability to perform successive 

frame data in stream mode. All arithmetic units in 

the processor are working in pipelined mode. 

The rest of this paper is organized as follows. In 

the next section we review the discrete HT 

definition, and then discuss its related computational 

methods and algorithms. In section III a novel 

discrete HT SFG and the architecture of the 

proposed discrete HT processor is illustrated. Then 

four types pipelined butterfly PE, multipliers and 

adders are presented in detail in this section. 

Performance evaluation and comparison of various 

discrete HT architectures is presented in section IV. 

Finally, concluding remarks are given in Section V. 

 

 

2 Discrete HT and FFT Algorithms 
This section gives a brief review on definitions and 

computational methods of discrete HT. Radix-2 

FFT/IFFT algorithm is also discussed. 

 

 

2.1 The Discrete Hilbert Transform 
The HT of signal ( )x t is defined as [3] 

1 ( ) 1
ˆ( ) ( )     (1)
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x t d x t
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where ˆ( )x t is the Hilbert transform result. 

The HT in the frequency domain is given by 

ˆ ( ) sgn( ) ( )                        (2)X j X     

Where ( )X  is the Fourier transform of ( )x t and 
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The discrete HT is developed as an exact 

equivalent of the Hilbert transform for discrete 

signals and is defined as 

ˆ( ) ( ) ( )            (4)x n x n h n   

Where ( )h n is the impulse of discrete HT given 

by 
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The discrete HT can be computed via FFT as 

shown below 

ˆ( ) IFFT( sgn( ) ( ))        (6)x n j m X m   

Where ( ) FFT( ( ))X m x n and 
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It is evident that the discrete HT can be 

calculated easily by FFT in three steps. This method 

transforms the input sequence to the frequency 

domain, then computes the Hilbert transform in the 

frequency domain and finally performs an IFFT 

operation to get the required Hilbert-transformed 

sequence. 

 

 

2.2 The Fast Fourier Transform 
The discrete Fourier transform (DFT) is the most 

straightforward mathematical method for finding the 

frequency content ( )X m of a sequence ( )x n in the 

time domain. The N-point DFT and Inverse DFT 

(IDFT) are defined as: 
1

0

1

0

( ) ( ) , m [0, 1]          (8)
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The twiddle factor exp( 2 )NW j N  denotes 

the N-point primitive root of unity. The IDFT can be 

rewritten as: 
*

1
*

0

1
( ) ( ) , 0,1, , 1     (10)

N
nm
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m

x n X k W n N
N
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The equations (8) and (10) have the same twiddle 

factors and the similar mathematical expression, so 

DFT and IDFT can be performed by same hardware. 
2N complex multiplications need to be calculated in 

equations (8) or (10), so a straightforward hardware 

implementation of the DFT algorithm is obviously 

impractical. Therefore, the FFT was developed to 

efficiently speed up DFT computation time and 

significantly reduce the amount of multiplications. 
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FFT was proposed by Cooley and Tukey [5] in 

1965. FFT is an efficient approach for reducing the 

computational complexity of DFT. Generally, FFT 

treats input sequence by decimation-in-frequency 

(DIF) or decimation-in-time (DIT) decomposition to 

build a regular SFG. 

In radix-2 DIF FFT, ( )x n  can be segmented into 

its even and odd indexed elements, then equation (8) 

is break into two parts as 
( 2) 1
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Then equations (12) and (14) are simplified to the 

form 
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For an N-point DFT, we perform an N/2-point 

DFT to get the first N/2 outputs and use those to get 

the last N/2 outputs. If N is in powers of two, The 

DFT can be divided into 2log N stages. 

 

 

2.4 Optimization of Constant Multiplications 

Some constant multiplications can be simplified to 

reduce the chip area in discrete HT. For instance, an 

input signal multiplied by twiddle factors 8N

NW or 
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Fig.1. The 16-point discrete HT SFG by two radix-2 DIF FFTs 
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3 8N

NW can be expressed as: 

8

3 8

( ) 2(( ) ( )) 2     (17)

( ) 2(( ) ( )) 2    (18)

N

N

N

N

a jb W a b j b a

a jb W b a j a b
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    
 

where a jb denotes a input signal data in complex 

form. Eqn. 17/18 saves two multipliers, and they 

need only two adders and two multipliers to perform 

twiddle factor multiplication. 

Another example, data multiplied by j are 

shown below: 

( )     (19)

( )     (20)

j a jb b ja

j a jb b ja

   

   
 

Eqn. 19/20 can be obtained by swapping and 

negating operation easier than multiplications, so 

data multiplied by j can be computed without 

adders and multipliers. The circuit implementation 

of these constant multipliers will be illustrated in the 

next section. 

 

 

3 The Proposed discrete HT SFG and 

associated Architecture 
 

 

3.1 The Proposed discrete HT SFG 
Discrete HT can be computed by two FFTs. As an 

example, a 16-point discrete HT SFG is depicted in 

Fig.1. The discrete HT SFG has seven stages, and 

these stages are computed by PE0, PE1, PE2, PE3 

and PE4. In fact, discrete HT depicted by this SFG 

form with point size N, where N is in powers of two, 

can be divided into 22log 1N   stages and performed 

by these five types of PEs. 

The construction of discrete HT SFG needs to 

avoid bit reversed sorting. Bit reversed sorting is a 

time consuming operation, and it needs additional 

memories for swapping data. Two FFTs with 

different decomposition in the discrete HT SFG can 

avoids bit reversed sorting. In most cases, natural 

order data meets our work demands, so FFT in 

discrete HT SFG is of DIF decomposition, and IFFT 

is of DIT decomposition. 

In the middle of discrete HT SFG, three stages 

without twiddle factor multiplications are combined 

into one stage, so the stages of N-point discrete HT 

are changed from
22log 1N  to

22log 1N  . The 

optimization decreases two stages iteration in the 

discrete HT SFG. 

 

 

3.2 Optimization of the discrete HT SFG 
The discrete HT SFG described above appears 

regularity and has less complex multipliers required. 

Thus, it is suited for hardware implementation. The 

optimization of the discrete HT SFG can decrease 

the computation latency significantly. Discrete HT 

in the frequency domain is expressed in equations (6) 

and (7). It is evident that the discrete HT can be 

calculated easily in the frequency domain as 

multiplications with j , and these multiplications 

can be replaced with conjugating and swapping 

operations. Moreover, the last FFT stage and the 

first IFFT stage have multiplications with j also. 

Discrete HT multiplication in the frequency domain 

can be combined with two adjacent FFT/IFFT 

stages. This method is shown in Fig.2. Assume that 

the inputs of one butterfly in the last FFT stage are 

(ar, ai) and (br, bi), so the FFT butterfly result is 

(ar+br, ai+bi) and (ar-br, ai-bi). After complex 

multiplications in the frequency domain, the result is 

(ai+bi, -ar-br) and (bi-ai, ar-br). One conjugation is 

performed after complex multiplications, so the 

numbers are changed to (ai+bi, ar+br) and (bi-ai, 

br-ar). Then the butterly in the first IFFT stage 

treats (ai+bi, ar+br) and (bi-ai, br-ar) as the inputs 

and this IFFT butterfly results are (2bi, 2br) and (2ai, 

2ar). The results can write as (bi, br) and (ai, ar) 

also. A series of complicated operations on (ar, ai) 

and (br, bi) are optimized to swap operations shown 

in Fig.2. We call this optimization as “Swap”. 

 

 

3.3 Twiddle Factors Symmetry 
Twiddle factors have a symmetric property. In the 

second quadrant, twiddle factor multiplications with 

a complex number can be written as: 
( 4)( ) ( ), 4 2  (13)k k N

N NW a jb W b ja N k N      

Twiddle factors is located in the first and the second 

quadrant. Given the equation (13), twiddle factors in 

the second quadrant can be obtained by a 

combination of twiddle factors in the first quadrant. 

In other words, arbitrary twiddle factors used in 

discrete HT can utilize this operation type to derive 

the wanted value, thus can significantly shorten the 

size of ROM used to store the twiddle factors. Based 
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Fig.2. Stages optimization of discrete HT SFG 
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on the symmetric property, the ROM size for 

twiddle factors will be reduced half. 

 

 

3.4 The Proposed discrete HT Architecture 
A 16-point pipelined discrete HT processor is 

shown in Fig.3. The proposed architecture is 

composed of five different types of processing 

elements (PEs), delay-line (DL) buffers (as shown 

by a rectangle with a number inside), and some 

other units. The proposed architecture is also suited 

for arbitrary point sizes in powers-of-2 by adding 

some PE3s to FFT and IFFT. Here, PE0 is a module 

without twiddle factor multiplication, and it is a sub-

module of PE1, PE2 and PE3. These three types of 

PEs are modules that contain twiddle factor 

multiplications, and they are divided into two parts 

internal. One part is complex additions and 

subtractions shown by a rectangle with a string 

“PE0” inside. Another part is twiddle factor 

multipliers shown by rectangles with letter “M” 

followed by a number inside. The star symbol in the 

figure means a conjugating operation which is easy 

to implement by taking the 2’s complement of the 

imaginary part of a complex value. The divided-by-

16 module can be substituted with a shifter. The 

detailed functions and structures of five types of PEs 

and three types of twiddle factor multipliers in Fig.4 

are described in the following subsections. 

 

 

3.5 The Pipelined butterfly PE architecture 

Based on the radix-2 FFT algorithm, five types of 

PEs (PE0, PE1, PE2, PE3 and PE4) used in our 

design are illustrated from Fig.4 to Fig.8. The 

functions of these five PE types correspond to each 

of the butterfly stages as shown in Fig.1. 

The pipelined structure of PE0 stage is shown in 

Fig.4. PE0 is used to perform the complex additions 

of the butterfly, and serves as the sub-modules of 

other PEs. (rin, iin) is the complex input data, (Rout, 

Iout) is the complex output data. (R0, I0) and (R1, I1) 

are one pair complex output data in the figure. 

Complex input data will store to DL buffers firstly 

until DL buffers are full. By this way, the input data 

has been broken into two parallel data stream 

flowing forward, with same length and correct 

“distance” between data elements entering the 

adders by proper delays. 

As for the PE1 stage shown in Fig.5, M0 is a 

sub-module to compute multiplication by –j. Data 

(R0, I0) from PE0 is send to M0 firstly. At the same 

time, data (R1, I1) is stored in buffers in M0. The 

length of buffers in M0 is 1. If signal “s0” is 0, data 

from PE0 will be sent to (Rout, Iout) directly. If signal 
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Fig.4. The architecture of PE0 
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Fig.5. The architecture of PE1 
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Fig.3. The architecture of proposed discrete HT processor 
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“s0” is 1, data from DL buffers will be multiplied by 

–j, and then sent to (Rout, Iout). DL buffers in Fig.5 

are used to combine two parallel complex data (R0, 

I0) and (R1, I1) into one successive serial data. 

The pipelined structure of the PE2 is shown in 

Fig.6. “M1” is a sub-module used to compute the 

twiddle factor multiplications with /8 3 /8,N N

N NW W or -j. 

Since 3 /8 /8N N

N NW jW  , the multiplication by /8N

NW  

and then by –j can substitute for the multiplication 

with 3 /8N

NW . Hence, the structure of PE2 utilizes this 

kind of cascaded calculation and some multiplexers 

to realize all the necessary calculations in the PE2 

stage. This method saves one complex multiplier to 

forms a low-cost hardware for computing 3 /8N

NW . In 

the figure, signal “s0” is used to select data from 

(R0, I0) or DL buffers. Signal “s0” is also used to 

enable or disable adders and multipliers in “M1”. 

Signal “s0” and “s1” works together to control the 

twiddle factors to be multiplied shown in Table 1. If 

“s1” and “s2” are both zero, meaning the twiddle 

factor is 1, no multiplication need to perform. If 

“s1” is zero and “s2” is one, then “M1” performs the 

complex multiplications by -j. If “s1” is one and 

“s2” is zero, then “M1” performs the complex 

multiplications by /8N

NW . If “s1” and “s2” are both 

one, then “M1” performs the multiplications by 

twiddle factor 3 /8N

NW . 

The pipelined structure of the PE3 is shown in 

Fig.7. “M2” is a sub-module used to compute 

twiddle factors multiplications which is composed 

of four multipliers and two adders. One ROM is 

required for storing twiddle factors. PE3 is a fully 

functional DIF butterfly which support arbitrary 

twiddle factor multiplications. 

PE4 is shown in Fig.8. PE4 has no multipliers 

and adders. The function of PE is that it swaps the 

real part and the imaginary part of complex data, 

and reverses the order of two successive complex 

data meanwhile. These operations are controlled by 

“s0”. Signal “s1” is used to control whether to do 

multiplication by –j. 

 

 

3.6 General multiplier 
Multipliers are used in PE3 for the computation of 

complex multiplication by twiddle factors. Based on 

equation 13, the circuit structure of complex 

multiplier shown in Fig.9, also adopts a cascaded 

scheme to achieve low-cost hardware. Here, (I0, I1) 

are the input signals, and (Q0, Q1) are the output 

signals the same as (Rout, Iout) in PE3. (cosa, sina) 

are twiddle factors read from ROM. 

Some architectures are proposed in [22-26] 

Serial, booth and carry save are some general 

architectures in multiplier design. Serial multiplier 

has a high clock rate, but it has a large circuit area 
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Fig.6. The architecture of PE2 
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Fig.7. The architecture of PE3 
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Fig.8. The architecture of PE4 

TABLE 1 

TWIDDLE FACTORS SELECTION 

s0 s1 Twiddle factors 

0 0 1 

0 1 -j 

1 0 /8N

NW  

1 1 3 /8N

NW  

 

WSEAS TRANSACTIONS on SIGNAL PROCESSING Wang Xu, Zhang Yan, Ding Shunying

E-ISSN: 2224-3488 26 Issue 1, Volume 9, January 2013



and long latency for computation. 4-bit booth 

multiplier saves half of the clock cycles compared 

with serial multiplier, but the latency is not the 

minimal. The array multiplier has a compacted 

structure and a very efficient layout. But it is hard to 

determine the propagation delay straightforward due 

to array organization. The carry save architecture is 

chosen for designing the 16x16 bit multiplier 

because it has a moderate latency with 

comparatively small area. The carry bits are passed 

diagonally downwards in the carry save multiplier. 

Partial products are made by anding the inputs 

together and passing them to the appropriate adder. 

The number of adders (HA and FA) in each stage 

is equal to the mantissa’s length minus one. For 

example, a 16x4 carry save multiplier is shown in 

Fig.10 and it has four stages: The first stage consists 

of three HAs. The second and the third stages 

consist of three FAs respectively. The last stage 

consists of one HA and two FAs. The critical path 

of the processor is in the multiplier. The latency of 

the proposed pipelined multiplier is LM=4. 

 

 

3.7 Adders 
The design and simulation of various adder 

structures are depicted in [27-36]. The carry-

lookahead structure has the fast speed, but it is only 

useful for small input words width. The carry-select 

structure is chosen to implement the 16-bit adder in 

PEs. The carry-select adder anticipates both possible 

values of the carry input and evaluate the result for 

both possibilities in advance. Once the real value of 

the incoming carry is known, the correct result is 

easily selected with a simple multiplexer. The 

latency of the carry-select adder is LA=1. 

 

 

3.8 Constant multipliers 
Constant multipliers have higher computed speed 

and less chip area cost than general multipliers. The 

constant multiplication by 2 2 can be implemented 

by a special bit parallel multiplier instead of general 

word length multipliers. The binary representation 

of 2 2  is: 

1 3 4 6 8 142 2 2 2 2 2 2 2     (21)            

Eqn.21 includes five additions and six shift 

operations, and a straightforward implementation 

for the above equation introduces a poor precision 

due to the truncation error [17], and spends more 

hardware cost. To improve the precision, eqn.19 can 

be rewritten as: 
1 3 3 3 5 112 2 (2 2 )(1 2 ) 2 (2 +2 )  (22)          

 According to eqn.22, the circuit structure of the 

constant multiplier is illustrated in Fig.11. The 

circuit uses four adders and five barrel shifters. The 

constant multiplier adopts pipeline technology for 

high performance, and its latency is three clock 

cycles. The realization of complex multiplication 

by /8N

NW and 3 /8N

NW using a radix-2 butterfly structure 

with its both outputs multiplied by 2 2 is shown in 

Fig.6. This circuit structure has just been used in the 

PE2 and its latency is L0.707=3. 

The multiplication by -j can be calculated by a 

negation and an additions, so its latency is L-j=1. 

 

 

4 Implementation and Performance 

Analysis 
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Fig.11. The architecture of the constant multiplier 
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Fig.9. The architecture of the complex multiplier. 
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Fig.10. the architecture of 16x4 bit carry save 

multiplier 
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4.1 Implementation 
A pipelined discrete HT processor with point size 

1024 is implemented in the paper. The word width 

of the processor is 16 bits. The processor is 

simulated on XC5VLX50T-2 FPGA. The placement, 

route process, and timing analysis of the synthesized 

designs are accomplished using Xilinx Design Suite 

13.2. The design was written by Verilog HDL and 

doesn’t contain Xilinx DSP48Es. 

The latency of the 1024-point discrete HT 

processor is the sum of all stages latency of PEs and 

the point size. The latency of each stage is the clock 

cycles of cascaded arithmetic units cost and the 

depth of buffers. The latency of all stages is listed in 

table 2. So the processor latency of the 1024-point 

FFT and discrete HT are 
9

0

18

0

1024 =3119        (23)

1024 =5212        (24)

FFT i

i

HT i

i

L L

L L





 

 




 

 

 

4.2 Comparison 
In Table 3, a number of DSP processors are 

compared with the proposed one. The hardware in 

[37] has a low clock rate. This architecture adopts 

radix-4 FFT algorithm and has poor memory 

utilization. The architecture includes four memories, 

and their depth equals to the discrete HT point size. 

The FFT processor proposed in [38] adopts ASIC 

implementation with 0.18um and 1.8V voltage. This 

FFT processor has a slow latency because the PE is 

of radix-24 algorithm.  In [39] the PE is not working 

in pipelined mode, so the latency is longer than our 

work. In our work, the 1024-point pipelined discrete 

HT includes 19 stages after the optimization of SFG. 

In Table 3, our work has the minimal latency for 

computing discrete HT. 

 

 

5 Conclusion 
A high performance pipelined discrete HT processor 

is presented in this paper. The processor adopts FFT 

algorithm to compute discrete HT. Some stages in 

the discrete HT SFG have no multiplications. They 

are combined into one stage to decrease the 

computation latency. The discrete HT processor is 

composed of four types pipelined PE. Data being 

processed is of fixed point mode with 16-bit word 

width. Pipelined adders and multipliers are designed 

to enhance the performance of the discrete HT 

processor. The proposed discrete HT processor is 

written in Verilog HDL, so it is easy for ASIC 

implementation. The performance analysis with 

some previous paper approaches show that the 

proposed discrete HT processor has the shortest 

clock latency in discrete HT computation with same 

samples. 
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